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The Stern-Volmer constant of fluorescence quenching by reversible intermolecular charge transfer is obtained
by means of integral encounter theory. The latter provides the first non-Markovian description of the
phenomenon which accounts for the reversibility of excited-state ionization. The forward and backward electron
transfers (bimolecular and geminate) are specified by the position-dependent rates of ionization and
recombination. Assuming that the conventional free energy gap law is inherent to all of them, a reasonable
explanation is given for the famous Rehm and Weller free energy dependence of the Stern-Volmer constant.
It requires the production of ions in excited states when forward electron transfer is highly exergonic and
implies that the charge recombination occurs not only to the ground but also to the excited triplet state. It is
assumed that spin conversion in the radical ion pairs is faster than the geminate recombination.

I. Introduction

Fluorescence of the excited electron donors D*, which may
be quenched in encounters with electron acceptors A (or vice
versa), is accompanied by the production of either contact or
separated radical-ion pairs (RIPs). The ratio of the fluorescence
quantum yield in the presence and in the absence of acceptors
is known as relative quantum yieldη, which obeys the famous
Stern-Volmer law:

Here,c ) [A] is the total concentration of acceptors,τ is the
lifetime of the excitation, andκ is the Stern-Volmer quenching
constant. The latter is usually studied as a function of the
reaction free energy∆Gi, that is, the free energy of ionization
∆GI(r) at the closest approach distancer ) σ. The free energy
dependenceκ(∆Gi) was expected to confirm the fundamental
conclusion of the Marcus theory of electron transfer, that is,
the ceasing of transfer and quenching in the Marcus inverted
region.1 This is the region of negative∆Gi whose absolute values
are larger than the contact reorganization energy,λc ) λ(σ).
The failure of this expectation, discovered by Rehm and Weller
for more than 60 electron donor-acceptor systems (Figure 1),
created a problem.2 The violation of the Marcus free energy
gap (FEG) law in liquid solutions is contrasted with its
comprehensive confirmation for solid systems or intramolecular
reactions, where the distance between reactants is fixed.3 This
paradox attracted the attention of many authors,4-8 but it still
has not been undoubtedly explained.

An original FEG law was established for the monomolecular
rate of ionizationWI(r) depending on the distance between D*
and A. A similar law should be inherent to the kinetic rate
constant of forward electron transfer (ionization)kf(∆Gi) ) ∫WI-
(r) d3r as well. However, the Stern-Volmer constantκ is not
identical tokf. If a reaction is controlled by diffusion,κ is much
closer to the diffusional rate constantkD ) 4πσD, whereD is

the sum of the diffusion coefficients of D* and A. The
diffusional rate constant establishes an upper limit for theκ,
which is independent of∆Gi and constitutes the plateau arising
in Figure 1 at large|∆Gi| values. Roughly speaking, it is the
same not only for different systems, but even for different
reactions, providedD andσ are similar to all of them. The open
circles in Figure 1, which were taken from another work,
illustrate and enhance this statement; the whole curve is more
or less universal and its interpolation, as proposed by Rehm
and Weller, is still in use.9

The reverse electron transfer to the excited state with the rate
WB(r) cannot be ignored at∆GI g 0. According to the Marcus
FEG law and the detailed balance principle, the rates of

η ) 1
1 + cκτ

(1.1)

Figure 1. The Stern-Volmer quenching constantkq ≡ κ obtained in
ref 2 versus the free energy of ionization∆G23 ≡ ∆Gi. The open circles
represent data obtained in another work.9 The free-energy dependence,
shown by a solid line, represents the theoretical expectation of Rehm
and Weller deduced from their original approach to the simplest reaction
mechanism of quenching.2
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reversible electron transfer,WI andWB, are related to each other
as follows:

wherekB ) 1. At ∆GI g 0 we see thatWB g WI so that, in
principle, backward transfer cannot be neglected. On the other
hand, the rate of recombination to the ground state also obeys
the same FEG law,

and crucially depends on the recombination free energy

whereε is the excitation energy of D*. When∆GI ≈ 0 we have
∆GR ≈ ε > λ . T andWR is exceptionally small. Taking an
extreme view, one can conclude that sooner or later all RIPs
will transform into the initial reactants and contribute to the
delayed fluorescence of D*. More precisely,η ≡ 1 andκ ≡ 0
atWR ) 0. The reversible transfer does not work as a quenching
mechanism unless the RIP recombination is much faster than
reverse electron transfer to the excited state.

It is likely that only Rehm and Weller clearly understood
this condition of reaching high values ofκ, thus approaching
kD. To fit the condition, they assumed that, contrary to the FEG
law (1.3),

This is, of course, strongly inconsistent; to look for the FEG
law in ionization but not in recombination. The equality (1.5)
holds only in a narrow (“activationless”) region, near∆GR )
- λ, but ∆GR does not remain constant. According to eq 1.4,
it varies together with∆GI over a wide range when one acceptor
is substituted for another. However, surprisingly, the Rehm-
Weller interpolation, based on an elementary rate description
of the phenomenon and a very questionable assumption (1.5),
was used a number of times, even in the most recent works,
where classical dependence (1.3) was confirmed experimen-
tally.9

Other successors of Rehm and Weller made even more rough
simplifications. They assumed that ionization is irreversible, that
is, WB ≡ 0, despite the detailed balance principle (1.2) which
relatesWB to WI.4-8 Although implausible, this assumption
provides two significant advantages. First, it relieves one of
accounting for charge recombination, which can be arbitrary
slow if there is no backward transfer to the excited state. Second,
the conventional differential encounter theory (DET) of ir-
reversible transfer8,10 provides the non-Markovian description
of ionization kinetics via time-dependent ionization rate constant
kI(t) expressed throughWI(r). Using DET, researchers usually
concentrate on the calculation of the stationary rate constant,ki

) kI(∞), fitting its free-energy dependence to the Stern-Volmer
data. Generally speaking, the Stern-Volmer constantκ * ki,
but in the case of irreversible ionization there is only a small
difference between them; this difference results from the non-
Markovian corrections which are negligible at relatively large
τ.

The free-energy dependenceki(∆Gi) is more similar to the
Rehm-Weller results than to the classical FEG law particular
to kf(∆Gi). When the latter was measured independently as an

initial value of the time-dependent rate constantkI(0) ) kf, the
results reproduced the bell-shaped FEG curve. In contrast, the
top of theki(∆Gi) curve is cut off by the diffusional plateauki

≈ kD.6 This is a final, commonly accepted explanation of the
Rehm-Weller paradox. However, there are still two questions
that remain: why the diffusional plateau is so long and why
the ascending branch is so sharp. And, of course, there are no
reasons, in principle, to ignore the reverse electron transfer to
the excited state.

To remove this main problem, one has to substitute DET by
a more general theory which accounts for reverse transfer to
the excited state. This has been done recently11 with the so-
called integral encounter theory (IET), which provides a non-
Markovian description of transfer kinetics beyond the rate
concept.12 IET is especially well-suited for analytic calculations
of stationary characteristics of processes, like the Stern-Volmer
constantκ. It was successfully applied to a number of similar
problems in some recent works.11,13-16 Here, we will calculate
κ(∆Gi) by means of IET and use this instead ofki(∆Gi) to fit
the real experimental data.

To reach results as good in agreement as those obtained by
previous researchers, we have to make the forward electron
transfer effectively irreversible. This is possible if the recom-
bination of charged products at the low exergonicity edge of
the FEG curve is somehow facilitated. Without resorting to eq
1.5, it can be done if ions are allowed to recombine not only to
the ground state, but to the triplet state as well. The excited
triplet state of neutral products is energetically much closer to
the initial RIP state; therefore, the rate of recombination through
this channel is much higher. The electronic excitation of RIP
will also be incorporated. It is also necessary to explain fast
forward transfer in the opposite edge of the FEG curve, at highly
exergonic ionization. Invoking the excited states of reactants
and products, we will be able to explain the whole free-energy
dependenceκ(∆Gi), thus circumventing revisions of the classical
FEG law for backward and forward electron transfer2,17 or
abnormal stretching ofλ(r) dependence.6

As a preliminary point, we briefly revise the problem in the
next section by more accurately reproducing the Rehm-Weller
estimate ofκ for reversible photoionization. This will be done
in terms of the Markovian rate theory, as applied to a greatly
simplified reaction scheme used in the Rehm-Weller work. In
section III we will present the non-Markovian generalization
of this result that is obtained with IET. Taking into account the
real-space dispersion of all transfer rates and the free-ion
bimolecular recombination after photoseparation, we will cal-
culateκ(∆Gi) in the most general way. In contact approximation
and Markovian limit, this result reduces to the result obtained
by Rehm and Weller and reproduced in section II. It will be
also shown that the significant gap between the FEG law for
reversible and irreversible ionization (represented byki(∆Gi))
can be avoided if recombination to the triplet state after fast
spin conversion in RIPs is taken into account. The real fitting
of the IET with triple-enhanced recombination to the Rehm-
Weller data is given in section IV. Using conventional space
dependence of reorganization energy, we extended the diffu-
sional plateau that covered the majority of experimental points,
with the exception of a single group of the most exergonic
systems. We assume that they are located at the diffusional top
of another FEG curve that is related to ionization producing
excited ions. In conclusion, we stress the essential, though not
principal, limitations of the present theory, contact approxima-
tion and ultrafast spin conversion in RIPs.

WI ) Wi exp(-
(∆GI + λ)2

4λT ) ) WB exp(-
∆GI

T ) (1.2)

WR ) Wr exp(-
(∆GR + λ)2

4λT ) (1.3)

∆GR ) -ε - ∆GI (1.4)

WR ) Wr at any∆GR (1.5)
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II. The Markovian Theory of Reversible Exciplex
Formation Followed by Its Recombination

The relative quantum yield is expressed through the stationary
populations of the excited and ground states,Ns

/ and Ns, of
fluorescent molecules permanently excited with a rateI0:16,18

The stationary solution to the problem is provided by a
Markovian version of DET applied to the simplest reaction
scheme of Rehm and Weller.2

The full set of Markovian kinetic equations has the following
form:

whereN*, N, andNe are populations of excited and ground states
and of the contact ion pair (CIP), or exciplex, [D+A-]. The
latter decays either back to the excited state or down to the
ground state, with contact rateskb or WR(σ), respectively. On
the other hand, it is permanently generated in binary encounters
of neutral reactants with the stationary rate constant of DET:10

Here,ns(r) is the stationary solution of the auxiliary equation
for reactant distribution:

SettingṄ* ) Ṅe ) Ṅ ) 0 we obtain the stationary solution
to the problem:

Using this in eq 2.1, we obtain from the general formula (1.1)
the following expression for the Stern-Volmer constant:

This result is identical to that which was obtained in eq 2 of
the Rehm-Weller article.2 The full identity is seen after
untangling the relationship between the phenomenological
parameters of the Rehm-Weller article and those used by DET
in contact approximation:

whereV is the volume of the reaction zone near the contact. It
should also be taken into account that in contact approximation,

is either kinetic or diffusion controlled, as is the monomolecular
rate of exciplex dissociation:19

where

is the equilibrium constant of exciplex formation.
Finally, we obtain from eqs 2.9 and 2.10 that the Stern Volmer

constant of reversible quenching,

coincides withki if either backward transfer to the excited state
is switched off (K ) ∞) or forward transfer is irreversible due
to the immediate decay of the exciplex (WR(σ) ) ∞). Neither
of these requests can be met at arbitrary values of∆Gi. If Wr

andWi are large enough, the Rehm-Weller assumption (1.5)
helps theκ andki values to equalize and to approach their upper
limit, kD. However, the assumption does not hold for all free
energies, only near-∆Gi ≈ ε - λc where recombination to the
ground state is at its maximum. At large exergonicity of
recombination the problem may be eliminated, but it remains
very keen at∆Gi J 0.

Since the plateau in Figure 1 manifests that the photoion-
ization there is controlled by diffusion, the usage of Markovian
theory is not appropriate in that region. If the ionization were
irreversible one would be able to apply non-Markovian DET;
this is, in essence, the rate theory, but it accounts for some
nonstationary effects. Unfortunately, the rate approach to
reversible reactions is invalid, especially when products are more
stable than reactants.20,21Alternatively, one should apply a more
fundamental non-Markovian approach, as represented by integral
encounter theory (IET), which reaches beyond the rate concept
and is more relevant to the problem in hand.

III. The Non-Markovian Theory of Reversible Charge
Separation Followed by Free Ion Recombination

Generally speaking, the exciplexes are subjected to reversible
dissociation which creates the solvent-separated ion pair:
[D+A-] h [D+‚‚‚A-]. The latter is mobile and can be separated
in the course of diffusion into two free ions. These ions
encounter the counterions from other pairs in the bulk solution
and recombine with them.

There are two alternative ways to generate an exciplex.
Exciplexes can appear as a result of contact electron transfer,
as in the previous section (eq 2.2), or through association of
ions created by distant electron transfer (eq 3.1).22 The first
scheme is more reliable in nonpolar solvents, while the second
is prefered in polar media. In the extreme case of highly polar
solvents, where the Onsager radiusrc ≈ σ, the depth of the
Coulomb well is compatible with the thermal energy, and the
exciplexes do not actually exist. The ion pairs formed in the
encounters of neutral reactants appear at different distances, not
always at contact. The fraction of them which escape geminate
recombination and separate can be easily calculated with DET
or IET. This is the charge separation quantum yieldæj which

η(c) )
Ns

*

I0τNs
(2.1)

Ṅ* ) -kicN* - N*/τ + kbNe + I0N (2.3)

Ṅe ) kicN* - kbNe - WR(σ)Ne (2.4)

Ṅ ) -I0N + N*/τ + WR(σ)Ne (2.5)

ki ) ∫WI(r)ns(r) d3r (2.6)

n̆ ) -WIn + D∆n, ∇n|r)σ ) 0 (2.7)

Ns
* ) I0τNs[1 +

WR(σ)

WR(σ) + kb

kicτ]-1

(2.8)

κ )
ki

1 + kb/WR(σ)
(2.9)

k12 ≡ kD ) 4πσD, k21 ) kD/V, k23 ) WI(σ) ) kf/V,

k32 ) WB(σ)

ki )
kfkD

kf + kD

kb ) WB(σ)
kD

kf + kD
)

ki

KV
(2.10)

K ) WI(σ)/WB(σ) ) exp(-∆Gi/T) (2.11)

κ )
ki

1 + ki/KWR(σ)V
(2.12)
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determines the free ion production ratekiæh . Such a scenario,
which includes the final stage of free ion recombination in a
bulk, assuming the ionization is irreVersible, has already been
studied with IET a number of times.13-15

There was also an earlier attempt to do the same for reversible
ionization, but without bimolecular recombination in the bulk.23

Unfortunately, under such conditions, stationary light absorption
and fluorescence do not exist; thus, eq 2.1 cannot be used for
the quantum yield calculation. Therefore, we turn here to the
complete scheme for the same reaction which ignores only the
exciplex formation.

As a matter of fact, this alternative to the Rehm and Weller
reaction (2.2) is much more plausible for distant electron transfer
in highly polar solvents. In parallel, we will consider a quite
different system that uses a positive ion, 2,4,6-triphenil-
thiopyrylium tetrafluoroborate (A+), as a sensitizer and a variety
of halogenated benzenes, toluenes, and anisoles as electron
donors (D). These systems have been studied in a few recent
works,9 and they were shown to participate in the following
reaction:

Although this is an electron exchange reaction rather than
an ionization reaction, we will not change the notation to stress
the similarity. An important difference is that there are two
parallel channels of RIP recombination. It was proved experi-
mentally that this reaction results in the formation of an excited
triplet of sensitizer along with its ground state, with the rates
WT andWS, respectively.9 For unknown reasons, the authors of
reference 9 ignored the triplet channel in the recombination of
free radicals, although they did account for it in the geminate
pair. We believe that triplets should be formed with the same
rate in both cases, and that their late detection can serve as an
indicator of radical recombination in the bulk. Bimolecular
radical recombination following the geminate recombination is
naturally included in IET theory of the system response to either
instantaneous or stationary excitation, launched with a rateI0.

This is the great advantage of IET that in integral kinetic
equations, as well as Markovian ones, the pumping termI0N is
additively incorporated with others. These equations, obtained
recently by a regular way,11 have the following form:

whereN+ ) [D+] ) [A-] is the total concentration of charged
particles (or radicals) in solution, in pairs, and in the bulk. It
was implied that the light pumping is rather weak, so that the
population of the ground stateN is not exhausted by the

excitation. Even more so, the pumping is unable to affect the
kernels of integral equations as it does at higher light power.16,24

The kernelsR* and R† are different. The former accounts
for only reversible ionization, with the forward and backward
transfer ratesWI(r) andWB(r), while the latter takes into account,
in addition, the irreversible recombination to the ground state
with a rateWR(r). Both kernels are given by their Laplace
transformations:

expressed via pair correlation functionsν and µ, which obey
the auxiliary equations:

with the initial conditionsν(r,0) ) 1, µ(r,0) ) 0, and reflecting
boundary conditions. Here,D̃ is an encounter diffusion coef-
ficient for ions which may be different from that for reactants,
D. The diffusional operator for ions also differs from that for
neutral reactants because it accounts for the Coulomb attraction
within a well of Onsager radiusrc.

The Laplace transformations of the kernels, which represent
the bimolecular recombination to the ground and excited states,
are

where auxiliary pair distributions obey the following set of
equations:

The initial conditions aref(r,0) ) 1 andg(r,0) ) 0.
Setting Ṅ* ) Ṅ+ ) 0 in eq 3.3 we obtain two algebraic

equations for Ns and N+. Resolving them forNs/N and
substituting the result into eq 2.1, we reproduce the classical
Stern-Volmer law (1.1) with quenching constant

If there is no recombination to the ground state, thenR̃*(0) )
R̃†(0), R̃#(0) ) R̃‡(0), andκ ) 0. In this case, all photogenerated
ions finally recombine to the excited state; this contributes to
the fluorescence, and the quantum yield becomes one. Alter-
natively, if backward transfer to the excited state is not possible

R̃*(s) ) (s + 1
τD

) ∫[WI(r)ν̃(r,s) - WB(r)µ̃(r,s)] d3r (3.4a)

R̃†(s) ) (s + 1
τD

) ∫[WI(r)ν̃(r,s) - WB(r)µ̃(r,s) -

WR(r)µ̃(r,s)] d3r (3.4b)

ν̆ ) -WI(r)ν + WB(r)µ - 1
τ
ν + D

1

r2

∂

∂r
r2 ∂

∂r
ν (3.5a)

µ̆ ) -WI(r)ν - WB(r)µ - WR(r)µ + D̃
1

r2

∂

∂r
r2 erc/r ∂

∂r
e-rc/rµ

(3.5b)

R̃‡(s) ) s∫[WR(r) f̃(r,s) + WB(r) f̃(r,s) - WI(r)g̃(r,s)] d3r
(3.6a)

R̃#(s) ) s∫[WB(r) f̃(r,s) - WI(r)g̃(r,s)] d3r (3.6b)

ḟ ) WI(r)g - WB(r)f -WR(r)f + D̃
1

r2

∂

∂r
r2 erc/r ∂

∂r
e-rc/rf

(3.7a)

ğ ) -WI(r)g + WB(r)f - 1
τ

g + D
1

r2

∂

∂r
r2 ∂

∂r
g (3.7b)

κ ) R̃*(0)[1 -
R̃†(0)R̃#(0)

R̃*(0)R̃‡(0)] ) {)0 atWR ) 0
) R̃*(0) atWB ) 0 (3.8)

Ṅ* ) -c∫0

t
R*(τ)N*( t - τ) dτ + ∫0

t
R#(τ)[N+(t - τ)]2 dτ -

N*
τ

+ I0N (3.3a)

Ṅ+ ) c∫0

t
R†(τ)N*( t - τ) dτ - ∫0

t
R‡(τ)[N+(t - τ)]2 dτ

(3.3b)
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(WB ) 0), then the general Stern-Volmer constant (3.8) reduces
to the simplest expression, inherent to the irreversible photo-
ionization.

In the normal Marcus region the electron transfer is, roughly
speaking, contact.6 If this is true for both the forward and
backward transfer, one can set equations 1.2 and 1.3 to
approximately,

where

Similarly,

in accordance with eq 2.10. In fact, either forward or backward
transfer (or both) is not contact, but there is no other way to
get tractable results which can be compared with elementary
rate theory employed in the approach to this problem by Rehm
and Weller’s method.

In the contact approximation (3.9-3.11), one of the kernels,
R̃*(0), was thoroughly studied, in ref 23, as a function of the
ionization free energy∆GI. Doing the same for three other
kernels, we derive that

where

Here,

whereτd ) σ2/D is an encounter time. Using these results in eq
3.8, we get the Stern-Volmer constant in the contact ap-
proximation:

where

If the non-Markovian contribution to the last equation,

xτd/τ, is small (due to a long lifetime at fast diffusion) it can
be neglected. Then, usingg0 ) 1/kD in eq 3.13 with eq 3.11,
we can reproduce the Markovian result (2.12):

where we took into account that in the contact approximation

The main point is that the Stern-Volmer constantκ, which
is given for reversible ionization by eq 3.15, differs qualitatively
from the stationary rate constant of irreversible ionizationki,
as defined by eq 3.16. However, it was the free-energy
dependence of the latter that was analyzed in a number of
theoretical works and fitted to the Rehm-Weller plot.4-7 This
is plausible where ionization is practically irreversible andκ ≈
ki, but not at the right edge of this plot, at∆Gi g 0, where the
sharp ascending branch is located. When∆Gi > T, the
equilibrium constantK ) exp(-∆Gi/T) , 1 while the free
energy of recombination to the ground state is extremely large
(-∆Gr ) ε + ∆Gi . λc) andkr is very small, according to the
FEG law (1.3). Since bothK and kr are so small, we obtain
from eq 3.15:

This result is represented in Figure 2 by a dashed line, where
κ(∆Gi) goes down too early as compared withki(∆Gi), long
before∆Gi turns to 0. The only way to eliminate such a crude
discrepancy is to strongly facilitate the recombination at large
∆Gr; that was done by making an artificial Rehm-Weller
assumption (1.5).

Fortunately, we can reach the same goal without breaking
the fundamental FEG law (1.3), but by assuming that the neutral
products of recombination can appear in excited triplet states.25

The transfer to the triplet state is much less exergonic than the
singlet-singlet transition to the ground state (Figure 3). This
makes the total recombination much faster, and reversible
ionization becomes effectively irreversible:

Figure 2. The free-energy dependence of the stationary rate constant
ki (thick line) and Markovian Stern-Volmer constantsκ in the cases
of ion recombination to the ground state (dashed line) and to the excited
triplet state of products (thin line). The open circles represent the Stern-
Volmer constant for the latter case, taking into account the non-
Markovian effects atτ ) τd ) σ2/D. The energy of the excited singlet
state isεT ) 3.5λc and that of triplet state isεT ) 2.3λc. The maximal
kinetic constant for ionization and recombination areki

max ≈ WiV )
103kD andkS

max ) kT
max ) 0.6kD (λc ) 35T).

ki )
kfkD

kf + kD
(3.16)

κ ≈ Kkr , ki (3.17)

κ ≈ ki if Kkr . ki (3.18)

Wi )
kfδ(r - σ)

4πσ2
, Wr )

krδ(r - σ)

4πσ2
(3.9)

kr ) ∫ WR(r) d3r (3.10)

WB(σ)V ≈ ∫WB(r) d3r ) kc ) kf/K (3.11)

R̃* )
kf(1 + krg̃2)

Z
R̃# )

kc

Z
R̃† )

kf

Z

R̃‡ )
kf + kr + kfkrg̃1

Z

Z ) (1 + kfg̃1)(1 + krg̃2) + kcg̃2

g̃1(s) ) [kD(1 + xsτd + τd/τ)]-1,

g̃2(s) ) [kD(1 + xsτd)]
-1 (3.12)

κ )
kfkr

kc + kr + kfkrg0
(3.13)

g0 ) g̃1(0) ) 1

kD(1 + xτd/τ)
(3.14)

κ )
ki

1 + ki/Kkr
(3.15)
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The mechanism which provides such an opportunity is the
spin conversion in the ion pair, which makes it possible to
recombine into the excited triplet state of one of the neutral
products. This is exactly the same mechanism which leads to
the formation of triplets in the reaction (3.2). Such a mechanism
has been shown to be irreplaceable for the interpretation of the
fast kinetics of ionization and charge accumulation in reaction
of excited perylene withN,N-dimethyl-o-toluidine.26 The re-
combination rates of the two competing channels have different
Arrhenius factors:

where∆GT ) ∆GS + εT has a much smaller absolute value
than ∆GS. Here, we restrict our consideration to the extreme
case of very fast spin-conversion in an ion-radical pair, which
equilibrates the distribution over all spin states almost im-
mediately after ionization. In this case the triplet contribution
in the recombination rateWR is maximal:

This generalization of the recombination rate must be combined
with a substitution of1/4WB for WB.

Inclusion of the triplet channel into the recombination
mechanism significantly improves the situation depicted in
Figure 2. The gap between the FEG laws for reversible and
irreversible ionization, which is very large for a single channel
recombination (to the ground state), is removed with IET by
accounting for the triplet channel. The Markovian free-energy
dependence ofκ only slightly deviates from that ofki at ∆Gi >
0. Moreover, the ascending branch ofκ at ∆Gi ≈ 0 is even
sharper than that ofki. This is actually an answer to one of the
questions raised above with respect to the Rehm-Weller plot.

There are nevertheless two remarks. First of all, if one prefers
to fit ki(∆Gi) instead ofκ(∆Gi) to real experimental data, the
triplet channel should be as strong as necessary to make the
backward transfer negligible. Second, the difference in the
lifetimes and diffusional coefficients in all reactant pairs should
be negligible. In fact, the latter is hardly the truth. The ratio

τ/τd determines the value of the non-Markovian correction to
κ, as estimated in eq 3.14. Due to this correction, the plateau in
the non-Markovian theory is significantly shifted upward, as
compared to the Markovian theory (Figure 2). This shift can
be different for each pair of reactants because the lifetimes and
diffusion coefficients are not the same for the whole collection
of systems. The vertical shift of the plateau shown in Figure 2
should be considered as a measure of the spread in the
experimental data for different pairs.

On this basis we will make our own fitting of the Markovian
κ(∆Gi) to the well-known set of Rehm-Weller experimental
data below. This will be done with the contact approximation,
but the quantum modes assisting electron transfer and the
realistic space dependence ofλ(r) will be taken into account.

IV. Fitting

As illustrated, the steep ascent to the diffusional Rehm-
Weller plateau can be reached by accounting for the reverse
transfer to the excited state along with the fast RIP recombina-
tion through additional triplet channels. Another problem with
interpretation of Rehm-Weller results lies in the fact that the
diffusional plateau, seen in Figure 1, is too wide. The same
plateau inherent in the contact estimate ofki(∆Gi) dependence,
given by eq 3.16, is much shorter at any reasonable value of
the contact reorganization energyλc ) λ(σ). In Figure 4 we
compared such a dependence for three arbitrarily chosen values
of λc with the original Rehm-Weller dependence. At eachλc

only a restricted region of the plateau can be reproduced. The
latter is wider the larger the value ofλc, but neither of the curves
spreads the whole length of the plateau.

A few ideas have been discussed in the literature regarding
how to overcome this difficulty. These take into account (i) the
distance dependence ofλ(r) in the position-dependent rate of
transferW(r); (ii) the multichannel nature of this rate, resulting
from the assistance of the quantum mode,ω, which is excited
in the course of electron transfer; (iii) and the electronic
excitation of transfer products.

In solvents of high polarity (ε > 40) one can ignore the space
dispersion of free energies, assuming they are equal to the
contact values everywhere (∆GI(r) ) ∆Gi). However, λ(r)
dependence is an essential factor which affects the distant
electron transfer in these solvents. With increasing exergonicity,

Figure 3. The scheme of energy levels and electron transitions in the
reaction pair. Horizontal dashed lines represent triplet states of the ion
pair and products of their recombination.

Figure 4. The FEG laws for the stationary ionization rate constant
ki(∆Gi), obtained in the contact approximation (3.16) for three different
but constant values ofλc ) 0.4 eV (a); 0.8 eV (b); and 2.7 eV (c). The
filled circles are experimental points of Rehm and Weller, taken from
Figure 1.

WS ) Wr exp(-
(∆GS + λ)2

4λT ),
WT ) Wr exp(-

(∆GT + λ)2

4λT ) (3.19)

WR ) 1
4
WS + 3

4
WT (3.20)
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the rate of electron transfer takes a bell shape and shifts out of
the contact.27,28Such a transformation ofWI(r) is accompanied
by changingλ(r), which is usually assumed to obey the classical
Marcus dependence

Since the maximumWI(r) moves away with increasing∆Gi,
the effectiveλ which corresponds to position of the maximum
also increases with∆Gi. As a result, curve a shown in Figure
4 continuously transforms to curve b, whereasλ reaches its
maximum, equal to 2λc. If, for instance,λc ) 0.4 eV, the
descending branch of a similar curve withλc ) 0.4 eV indicates
the upper border to which a plateau may be extended due to
classicalλ(r) dependence (4.1).

This border can be shifted a little bit farther if the multi-
channel nature of electron transfer is involved in the fitting. In
this case, the simplest single-mode formulas (1.2 and 1.3) should
be substituted by the following:29

where∆GI,R + pωn is the free energy of ionization (recombina-
tion) through thenth vibronic channel and

The single Franck-Condon parameter,S) λq/pω, is related to
the quantum-mode reorganization energyλq. The higher the
number of the vibronic channel, the smaller the corresponding
Franck-Condon factor,P(n) at S , 1, which hinders remote
electron transfer. However, the maxima of higher-order transi-
tions are shifted so far away from the contact that the whole
WI,R(r) curve and the free-energy dependence of the kinetic rate
constantskf(∆Gi) ) ∫WI(r) d3r or kr(∆Gr) ) ∫WR(r) d3r are
significantly stretched.29 This is why the plateau in theki(∆Gi)
dependence is also extended when transfer is assumed to be
multichannel with rather highS.

The combined effect ofλ(r) and the multichannel ionization
is demonstrated in Figure 5. The dashed bell-shaped curve shows
the FEG law for the single-channel contact ionization withλc

) 0.4 eV, which is corrected, as in Figure 2, for the backward
transfer and fast recombination. The rate of the latter, shown in
Figure 6, is also corrected forλ(r) and multichannel recombina-
tion. Composed from singlet and triplet components,kr exceeds
the valueWrV which is constant under the assumption made in
eq 1.5. As a result, the correcting term in the denominator of
eq 3.15 is small, but still essential at∆Gi g 0, whereK e 1.
Due to this term, the dependenceκ(∆Gi) has a steep ascent to
the plateau, althoughλc is not as small, as it “was found to be
necessary to fit the normal region of the experimental data of
Rehm and Weller” withki(∆Gi).6 In fact, we usedλc ) 0.4 eV;
this is twice as large as the value used in this reference.
Correspondingly, the maximalλ is 0.8 eV according to eq 4.1.
Scanning ofλ(r) in these limits and switching on the higher
excited states of the quantum mode significantly extends the
free-energy dependence ofκ, especially in the plateau region
whereκ ≈ kD. The vast majority of experimental points in this

region are covered by such a stretched FEG curve which
accounts for both these effects.

Unfortunately, this stretching is not enough to extend the
plateau up to a border group of points in Figure 5 with the
highest exergonicity. All of them are related to donors quenched
by Tetracyanoethylene (TCNE). In ref 6 they were reached by
extra stretching of the FEG dependence. This was done
assuming thatλ(r) dependence differs from that of the classical
law (4.1). Starting from the Monte Carlo estimates30,31 of this
dependence, the authors of ref 6 concluded thatλ changes from
λc ) 0.2 eV up toλ(∞) ) 2.7 eV, that is, 14 instead of 2 times.
We are in doubt regarding whether such a revision of eq 4.1 is
well grounded and reasonable. As an alternate possibility, we
would like to revive an old idea that was discussed a few
times,4,32,33but then rejected for deficient reasons in ref 30. The

λ(r) ) λc(2 - σ
r ). (4.1)

WI,R(r) )

WI,R
0 e-2(r-σ)/L∑

-∞

∞

P(n)xT

λ
exp[-

(∆GI,R + λ + pωn)2

4λT ], (4.2)

P(n) ) {e-SSn/n!, n g 0

exp(pωn
T )P(|n|), n < 0

(4.3)

Figure 5. The Markovian FEG law for the Stern-Volmer constant of
distant multichannel ionization (solid lines), producing stable ions (a)
or electronically excited products (b) in comparison to single-channel
contact ionization (dashed curve). In all cases, the backward transfer
and recombination to the triplet state are taken into account. The energy
of the excited singlet state of neutral reactants isε ) 3.2 eV and that
of the triplet state isεT ) 2.7 eV,ε* ) 1.71 eV,WI

0 ) 5 × 103 ns-1,
WT

0 ) WS
0 ) 48 ns-1 andλc ) 0.4 eV;ω ) 0.15 eV;S) 3; L ) 1.67

Å; σ ) 6 Å; and kD ) 2 × 1010 M-1s-1. The filled circles are
experimental points of Rehm and Weller, taken from Figure 1.

Figure 6. The kinetic constant for recombination at fast spin
conversion,kr ) 1/4kS + 3/4kT, in comparison toW(σ)V dependence
(dashed line) and the Rehm-Weller estimate (horizontal line). The thin
lines represent singlet and triplet components of the total rate. The thin
horizontal line represents the Rehm-Weller approximation forkr. Here,
εT ) 1.8 eV;WS

0 ) WT
0 ) 90 ns-1; λc ) 0.4 eV;ω ) 0.15 eV;S) 3;

L ) 1.67 Å; andσ ) 6 Å.
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charge transfer complexes of TCNE with different donors have
a low ground-state energy that can be formed without any
excitation, though with a rather small equilibrium constant.33

The energy of their excited state is also lower than that of excited
reactants (Figure 7). The same is true regarding the excited states
of solvent-separated ions, which we do not discriminate here
from contact ion pairs (CT). The forward electron transfer into
ion excited states is much faster than that into their ground states,
because the corresponding free energy,δGi ) ∆Gi - ε*, is
significantly less than∆Gi in absolute value. A simple shift of
our FEG curve to the left, forε* ) 1.71 eV≈ 70 T, makes
possible the very natural explanation of the position of TCNE
points at the top of it. Since in this regionκ ≈ kD, all the points
are located on the same plateau as the others.

This is our explanation of the abnormally wide plateau in
the Rehm-Weller collection of rather dissimilar systems.
Whatever these systems are, the diffusional rates are almost the
same for all of them and constitute the same plateau, whose
Markovian height is determined by a simple product of the
diffusion coefficient and the contact radius. There are a few
other collections of data which fit well with the multichannel
FEG law forki(∆Gi), without any modification of the classical
λ(r) dependence, eq 4.1. One of them, made in ref 34, is worthy
of special attention. To our knowledge, this is the single
experimental observation of the Marcus inverted region, instead
of a plateau, which is always obtained in liquid solutions. In
this particular system (RuII diimine complexes with cytochrome
c), the reorganization energy is reduced, so that the kinetic rate
constant pushes down and the whole FEG curve inherent to it
is more narrow. However, the choice of the contact radius of
23 Å is doubtful and raises the question whether the reaction is
chemically isotropic over such a huge sphere. To prove that
the interpretation of the phenomenon is reliable, one needs to
make one of two inspections: either to check the diffusional
dependence of the FEG curve, or to measure the transient rate
constant whose initial valuekf ) kI(0) should be higher than
the height of the plateauκ ≈ kD, if electron transfer is actually
controlled by diffusion. Until now such an inspection was done
only for the Rehm-Weller data.6,30,35It confirms that the curve
kf(∆Gi) lies above the plateau and exhibits a curvature inherent
to it.

V. Conclusions

The reversibility of transfer reactions between excited par-
ticles is an insurmountable problem for a non-Markovian theory
based on the rate concept.20 It can be overcome only with the
integral encounter theory, first used here to study the quantum
yield of fluorescence quenched by reversible ionization. We
argued that the fast RIPs recombination is necessary to make
the reversible ionization effectively irreversible and to explain
the sharp edge of the free-energy gap law in the quasi-resonant
region. We assume that RIP recombination is facilitated due to
spin conversion, which opens additional and more efficient
channels of ion recombination to the triplet state. On the other
hand, the excited triplet states of ion radicals should be produced
by forward electron transfer to make it fast enough at very high
exergonicity. Invoking the triplet excitations into the extended
reaction scheme helps in the uniform explanation of the free-
energy dependence of the Stern-Volmer constant, without
revision of the classical FEG law transfer rates or space
dispersion of reorganization energy.

The main limitation of the present theory is “contact
approximation”. It was employed to get the relatively simple
analytic solutions of our general equations and to confirm the
simplest results obtained in the Rehm-Weller work, by means
of conventional chemical kinetics. Sophisticated numerical
programs will soon be developed for the straightforward solution
of IET equations without making it necessary to resort to contact
approximation. On the other hand, the viscosity dependence of
the phenomenon should be studied experimentally to investigate
the diffusional control of reactions in the region of the FEG
plateau.

Another important limitation of the present theory is the
assumption of fast spin conversion in RIPs, thus allowing the
real rate and the mechanism of this process to be ignored. It
may be overcome by employing a rate description of spin
transitions, as in refs 36 and 37. This is appropriate for some
systems in zero or relatively small external magnetic fields.
Otherwise the basis of the problem should be essentially
extended and a more complex theory of coherent spin transitions
must be incorporated in IET, as was done for different goals in
refs 38 and 39.
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